Template:Infobox polyhedron

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Template documentation[view] [edit] [history] [purge]

Usage[edit]

{{Infobox polyhedron
| name          = 
| image         = only image file name
| caption       = image caption
| type          = general type of this shape
| euler         = Euler characteristic
| faces         = face count and types
| edges         = edge count
| vertices      = vertex count
| vertex_config = list faces around a vertex
| schläfli      = schläfli symbol
| wythoff       = wythoff symbol
| coxeter       = Coxeter-Dynkin diagram
| symmetry      = symmetry group
| surface_area  = some simple formula(e)
| volume        = some simple formula(e)
| angle         = dihedral angle
| dual          = dual polyhedron of this shape
| properties    =
| vertex_figure = only image file name
| net           = only image file name
}}


Legacy parameters[edit]

  • Image_File → image
  • Polyhedron_Type → type
  • Euler_characteristic → euler
  • Face_List → faces
  • Edge_Count → edges
  • Vertex_Count → vertices
  • Vertex_List → vertex_config
  • Wythoff_Symbol → wythoff
  • Symmetry_Group → symmetry
  • Dual → dual
  • Property_List → properties
  • VertexImage_File → vertex_figure
  • Net_Image_File → net

Examples[edit]

Set of pyramidal frustums
Pentagonal frustum.svgUsech kvadrat piramid.png
Examples: Pentagonal and square frustum
Facesn trapezoids, 2 n-gons
Edges3n
Vertices2n
Symmetry groupCnv, [1,n], (*nn)
Propertiesconvex

The code below results in the infobox on the right:

{{Infobox polyhedron
| name          = Set of pyramidal frustums
| image         = [[File:Pentagonal frustum.svg|110px]][[Image:Usech kvadrat piramid.png|110px]]
| type          =
| caption       = Examples: Pentagonal and square frustum
| faces         = ''n'' [[trapezoid]]s, 2 [[polygon|''n''-gons]]
| edges         = 3''n''
| vertices      = 2''n''
| symmetry      = [[Symmetry group#Three dimensions|C<sub>''n''v</sub>]], [1,''n''], (*''nn'')
| dual          = 
| properties    = convex
}}

See also[edit]